
Figure 6.28 (a) The counterclockwise rotation of this Northern Hemisphere hurricane is a major consequence of the Coriolis
force. (b) Without the Coriolis force, air would flow straight into a low-pressure zone, such as that found in tropical cyclones.
(c) The Coriolis force deflects the winds to the right, producing a counterclockwise rotation. (d) Wind flowing away from a
high-pressure zone is also deflected to the right, producing a clockwise rotation. (e) The opposite direction of rotation is
produced by the Coriolis force in the Southern Hemisphere, leading to tropical cyclones. (credit a and credit e: modifications of
work by NASA)

The rotation of tropical cyclones and the path of a ball on a merry-go-round can just as well be explained by inertia and
the rotation of the system underneath. When noninertial frames are used, inertial forces, such as the Coriolis force, must be
invented to explain the curved path. There is no identifiable physical source for these inertial forces. In an inertial frame,
inertia explains the path, and no force is found to be without an identifiable source. Either view allows us to describe nature,
but a view in an inertial frame is the simplest in the sense that all forces have origins and explanations.

6.4 | Drag Force and Terminal Speed

Learning Objectives

By the end of the section, you will be able to:

• Express the drag force mathematically

• Describe applications of the drag force

• Define terminal velocity

• Determine an object’s terminal velocity given its mass

Another interesting force in everyday life is the force of drag on an object when it is moving in a fluid (either a gas or a
liquid). You feel the drag force when you move your hand through water. You might also feel it if you move your hand
during a strong wind. The faster you move your hand, the harder it is to move. You feel a smaller drag force when you
tilt your hand so only the side goes through the air—you have decreased the area of your hand that faces the direction of
motion.

Drag Forces
Like friction, the drag force always opposes the motion of an object. Unlike simple friction, the drag force is proportional
to some function of the velocity of the object in that fluid. This functionality is complicated and depends upon the shape of
the object, its size, its velocity, and the fluid it is in. For most large objects such as cyclists, cars, and baseballs not moving
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too slowly, the magnitude of the drag force FD is proportional to the square of the speed of the object. We can write this

relationship mathematically as FD ∝ v2. When taking into account other factors, this relationship becomes

(6.5)FD = 1
2CρAv2,

where C is the drag coefficient, A is the area of the object facing the fluid, and ρ is the density of the fluid. (Recall that

density is mass per unit volume.) This equation can also be written in a more generalized fashion as FD = bv2, where b

is a constant equivalent to 0.5CρA. We have set the exponent n for these equations as 2 because when an object is moving

at high velocity through air, the magnitude of the drag force is proportional to the square of the speed. As we shall see in
Fluid Mechanics, for small particles moving at low speeds in a fluid, the exponent n is equal to 1.

Drag Force

Drag force FD is proportional to the square of the speed of the object. Mathematically,

FD = 1
2C ρ Av2,

where C is the drag coefficient, A is the area of the object facing the fluid, and ρ is the density of the fluid.

Athletes as well as car designers seek to reduce the drag force to lower their race times (Figure 6.29). Aerodynamic
shaping of an automobile can reduce the drag force and thus increase a car’s gas mileage.

Figure 6.29 From racing cars to bobsled racers, aerodynamic
shaping is crucial to achieving top speeds. Bobsleds are
designed for speed and are shaped like a bullet with tapered fins.
(credit: “U.S. Army”/Wikimedia Commons)

The value of the drag coefficient C is determined empirically, usually with the use of a wind tunnel (Figure 6.30).
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Figure 6.30 NASA researchers test a model plane in a wind
tunnel. (credit: NASA/Ames)

The drag coefficient can depend upon velocity, but we assume that it is a constant here. Table 6.2 lists some typical drag
coefficients for a variety of objects. Notice that the drag coefficient is a dimensionless quantity. At highway speeds, over
50% of the power of a car is used to overcome air drag. The most fuel-efficient cruising speed is about 70–80 km/h (about

45–50 mi/h). For this reason, during the 1970s oil crisis in the United States, maximum speeds on highways were set at
about 90 km/h (55 mi/h).

Object C

Airfoil 0.05

Toyota Camry 0.28

Ford Focus 0.32

Honda Civic 0.36

Ferrari Testarossa 0.37

Dodge Ram Pickup 0.43

Sphere 0.45

Hummer H2 SUV 0.64

Skydiver (feet first) 0.70

Bicycle 0.90

Skydiver (horizontal) 1.0

Circular flat plate 1.12

Table 6.2 Typical Values of Drag
Coefficient C
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Substantial research is under way in the sporting world to minimize drag. The dimples on golf balls are being redesigned,
as are the clothes that athletes wear. Bicycle racers and some swimmers and runners wear full bodysuits. Australian Cathy
Freeman wore a full body suit in the 2000 Sydney Olympics and won a gold medal in the 400-m race. Many swimmers
in the 2008 Beijing Olympics wore (Speedo) body suits; it might have made a difference in breaking many world records
(Figure 6.31). Most elite swimmers (and cyclists) shave their body hair. Such innovations can have the effect of slicing
away milliseconds in a race, sometimes making the difference between a gold and a silver medal. One consequence is that
careful and precise guidelines must be continuously developed to maintain the integrity of the sport.

Figure 6.31 Body suits, such as this LZR Racer Suit, have
been credited with aiding in many world records after their
release in 2008. Smoother “skin” and more compression forces
on a swimmer’s body provide at least 10% less drag. (credit:

NASA/Kathy Barnstorff)

Terminal Velocity
Some interesting situations connected to Newton’s second law occur when considering the effects of drag forces upon a
moving object. For instance, consider a skydiver falling through air under the influence of gravity. The two forces acting
on him are the force of gravity and the drag force (ignoring the small buoyant force). The downward force of gravity
remains constant regardless of the velocity at which the person is moving. However, as the person’s velocity increases, the
magnitude of the drag force increases until the magnitude of the drag force is equal to the gravitational force, thus producing
a net force of zero. A zero net force means that there is no acceleration, as shown by Newton’s second law. At this point,
the person’s velocity remains constant and we say that the person has reached his terminal velocity (vT). Since FD is

proportional to the speed squared, a heavier skydiver must go faster for FD to equal his weight. Let’s see how this works

out more quantitatively.

At the terminal velocity,

Fnet = mg − FD = ma = 0.

Thus,

mg = FD.

Using the equation for drag force, we have

mg = 1
2CρAvT

2 .

Solving for the velocity, we obtain

vT = 2mg
ρCA.
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6.10

Assume the density of air is ρ = 1.21 kg/m3. A 75-kg skydiver descending head first has a cross-sectional area of

approximately A = 0.18 m2 and a drag coefficient of approximately C = 0.70 . We find that

vT = 2(75 kg)(9.80 m/s2)
(1.21 kg/m3)(0.70)(0.18 m2)

= 98 m/s = 350 km/h.

This means a skydiver with a mass of 75 kg achieves a terminal velocity of about 350 km/h while traveling in a pike (head
first) position, minimizing the area and his drag. In a spread-eagle position, that terminal velocity may decrease to about
200 km/h as the area increases. This terminal velocity becomes much smaller after the parachute opens.

Example 6.17

Terminal Velocity of a Skydiver

Find the terminal velocity of an 85-kg skydiver falling in a spread-eagle position.

Strategy

At terminal velocity, Fnet = 0. Thus, the drag force on the skydiver must equal the force of gravity (the person’s

weight). Using the equation of drag force, we find mg = 1
2ρCAv2.

Solution

The terminal velocity vT can be written as

vT = 2mg
ρCA = 2(85 kg)(9.80 m/s2)

(1.21 kg/m3)(1.0)(0.70 m2)
= 44 m/s.

Significance

This result is consistent with the value for vT mentioned earlier. The 75-kg skydiver going feet first had a

terminal velocity of vT = 98 m/s. He weighed less but had a smaller frontal area and so a smaller drag due to

the air.

Check Your Understanding Find the terminal velocity of a 50-kg skydiver falling in spread-eagle
fashion.

The size of the object that is falling through air presents another interesting application of air drag. If you fall from a 5-m-
high branch of a tree, you will likely get hurt—possibly fracturing a bone. However, a small squirrel does this all the time,
without getting hurt. You do not reach a terminal velocity in such a short distance, but the squirrel does.

The following interesting quote on animal size and terminal velocity is from a 1928 essay by a British biologist, J. B. S.
Haldane, titled “On Being the Right Size.”

“To the mouse and any smaller animal, [gravity] presents practically no dangers. You can drop a mouse down a thousand-
yard mine shaft; and, on arriving at the bottom, it gets a slight shock and walks away, provided that the ground is fairly soft.
A rat is killed, a man is broken, and a horse splashes. For the resistance presented to movement by the air is proportional
to the surface of the moving object. Divide an animal’s length, breadth, and height each by ten; its weight is reduced to a
thousandth, but its surface only to a hundredth. So the resistance to falling in the case of the small animal is relatively ten
times greater than the driving force.”

The above quadratic dependence of air drag upon velocity does not hold if the object is very small, is going very slow, or is
in a denser medium than air. Then we find that the drag force is proportional just to the velocity. This relationship is given
by Stokes’ law.

Stokes’ Law

For a spherical object falling in a medium, the drag force is
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(6.6)Fs = 6πrηv,

where r is the radius of the object, η is the viscosity of the fluid, and v is the object’s velocity.

Good examples of Stokes’ law are provided by microorganisms, pollen, and dust particles. Because each of these objects
is so small, we find that many of these objects travel unaided only at a constant (terminal) velocity. Terminal velocities for
bacteria (size about 1 µm) can be about 2 µm/s. To move at a greater speed, many bacteria swim using flagella (organelles

shaped like little tails) that are powered by little motors embedded in the cell.

Sediment in a lake can move at a greater terminal velocity (about 5 µm/s), so it can take days for it to reach the bottom of

the lake after being deposited on the surface.

If we compare animals living on land with those in water, you can see how drag has influenced evolution. Fish, dolphins,
and even massive whales are streamlined in shape to reduce drag forces. Birds are streamlined and migratory species that
fly large distances often have particular features such as long necks. Flocks of birds fly in the shape of a spearhead as the
flock forms a streamlined pattern (Figure 6.32). In humans, one important example of streamlining is the shape of sperm,
which need to be efficient in their use of energy.

Figure 6.32 Geese fly in a V formation during their long
migratory travels. This shape reduces drag and energy
consumption for individual birds, and also allows them a better
way to communicate. (credit: modification of work by
“Julo”/Wikimedia Commons)

In lecture demonstrations, we do measurements of the drag force (https://openstax.org/l/21dragforce)
on different objects. The objects are placed in a uniform airstream created by a fan. Calculate the Reynolds number
and the drag coefficient.

The Calculus of Velocity-Dependent Frictional Forces
When a body slides across a surface, the frictional force on it is approximately constant and given by µk N. Unfortunately,

the frictional force on a body moving through a liquid or a gas does not behave so simply. This drag force is generally a
complicated function of the body’s velocity. However, for a body moving in a straight line at moderate speeds through a
liquid such as water, the frictional force can often be approximated by

fR = −bv,

where b is a constant whose value depends on the dimensions and shape of the body and the properties of the liquid, and v
is the velocity of the body. Two situations for which the frictional force can be represented by this equation are a motorboat
moving through water and a small object falling slowly through a liquid.

Let’s consider the object falling through a liquid. The free-body diagram of this object with the positive direction downward
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is shown in Figure 6.33. Newton’s second law in the vertical direction gives the differential equation

mg − bv = mdv
dt ,

where we have written the acceleration as dv/dt. As v increases, the frictional force –bv increases until it matches mg.

At this point, there is no acceleration and the velocity remains constant at the terminal velocity vT. From the previous

equation,

mg − bvT = 0,

so

vT = mg
b .

Figure 6.33 Free-body diagram of an object falling through a
resistive medium.

We can find the object’s velocity by integrating the differential equation for v. First, we rearrange terms in this equation to
obtain

dv
g − (b/m)v = dt.

Assuming that v = 0 at t = 0, integration of this equation yields

⌠
⌡0

v
dv′

g − (b/m)v′ = ∫
0

t
dt′,

or

−m
b ln⎛

⎝g − b
mv′⎞⎠|0v = t′|0t ,

where v ' and t ' are dummy variables of integration. With the limits given, we find

−m
b [ln⎛

⎝g − b
mv⎞

⎠ − lng] = t.

Since lnA − lnB = ln(A/B), and ln(A/B) = x implies ex = A/B, we obtain

g − (bv/m)
g = e−bt/m,

and

v = mg
b (1 − e−bt/m).

Notice that as t → ∞, v → mg/b = vT, which is the terminal velocity.
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The position at any time may be found by integrating the equation for v. With v = dy/dt,

dy = mg
b (1 − e−bt/m)dt.

Assuming y = 0 when t = 0,

∫
0

y
dy′ = mg

b ∫
0

t
(1 − e−bt '/m)dt′,

which integrates to

y = mg
b t + m2 g

b2 (e−bt/m − 1).

Example 6.18

Effect of the Resistive Force on a Motorboat

A motorboat is moving across a lake at a speed v0 when its motor suddenly freezes up and stops. The boat then

slows down under the frictional force fR = −bv. (a) What are the velocity and position of the boat as functions

of time? (b) If the boat slows down from 4.0 to 1.0 m/s in 10 s, how far does it travel before stopping?

Solution
a. With the motor stopped, the only horizontal force on the boat is fR = −bv, so from Newton’s second

law,

mdv
dt = −bv,

which we can write as

dv
v = − b

mdt.

Integrating this equation between the time zero when the velocity is v0 and the time t when the velocity

is v , we have

⌠
⌡0

vdv′
v′ = − b

m∫
0

t
dt′.

Thus,

ln v
v0

= − b
mt,

which, since lnA = x implies ex = A, we can write this as

v = v0 e−bt/m.

Now from the definition of velocity,

dx
dt = v0 e−bt/m,

so we have

dx = v0 e−bt/m dt.

With the initial position zero, we have
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⌠
⌡0

x
dx ' = v0 ∫

0

t
e−bt '/mdt ',

and

x = − mv0
b e−bt '/m|0t = mv0

b (1 − e−bt/m).

As time increases, e−bt/m → 0, and the position of the boat approaches a limiting value

xmax = mv0
b .

Although this tells us that the boat takes an infinite amount of time to reach xmax, the boat effectively

stops after a reasonable time. For example, at t = 10m/b, we have

v = v0 e−10 ≃ 4.5 × 10−5 v0,

whereas we also have

x = xmax(1 − e−10) ≃ 0.99995xmax.

Therefore, the boat’s velocity and position have essentially reached their final values.

b. With v0 = 4.0 m/s and v = 1.0 m/s, we have 1.0 m/s = (4.0 m/s)e−(b/m)(10 s), so

ln 0.25 = −ln 4.0 = − b
m(10 s),

and

b
m = 1

10ln 4.0 s-1 = 0.14 s-1 .

Now the boat’s limiting position is

xmax = mv0
b = 4.0 m/s

0.14 s−1 = 29 m.

Significance

In the both of the previous examples, we found “limiting” values. The terminal velocity is the same as the limiting
velocity, which is the velocity of the falling object after a (relatively) long time has passed. Similarly, the limiting
distance of the boat is the distance the boat will travel after a long amount of time has passed. Due to the properties
of exponential decay, the time involved to reach either of these values is actually not too long (certainly not an
infinite amount of time!) but they are quickly found by taking the limit to infinity.

Check Your Understanding Suppose the resistive force of the air on a skydiver can be approximated

by f = −bv2 . If the terminal velocity of a 100-kg skydiver is 60 m/s, what is the value of b?
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